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ABSTRACT 
In model based acoustic localisation (MBAL) the locations of underwater objects are estimated by 
comparing sensor measurements with model predictions. To obtain high quality predictions, computationally 
demanding propagation models need to be run for a large set of environmental parameters. The 
computational resources that are available onboard are typically not sufficient to perform accurate MBAL 
estimations on real-time data. In this work, we develop a quantum algorithm that uses quantum annealing to 
enhance underwater acoustic localisation. 

A restricted Boltzmann machine (RBM) is trained to predict the probability distribution of the candidate 
location of an underwater target. Advantage of this approach is that part of the computation can be moved 
to offline-training. Moreover, once the model is trained, the probability distribution can be sampled more 
efficiently using a quantum annealer. Potentially, this could enable real-time accurate target estimations to 
be made onboard. The RBM is applied to a simplified multi-sensor horizontal localisation problem where we 
assume a constant and linear acoustic propagation. Using simulated annealing we show that the RBM is 
able to learn probability distributions that resemble target locations. First results show that the training and 
sampling can be done using quantum annealing hardware by D-Wave Systems for a limited size example. 

Our contribution is the first work that explores how quantum algorithms can be applied for more efficient 
information processing for acoustic underwater localisation.  

1.0 INTRODUCTION 

Underwater sensing is a key capability for navies. Various platforms, such as frigates, submarines, 
autonomous vehicles and underwater networks rely on passive acoustic monitoring to detect threats, or to 
navigate safely underwater. Passive localisation of objects in an underwater environment is a much more 
challenging task when compared to localisation on land [1]. Electromagnetic waves that are typically being 
used in air cannot be used in underwater settings as these waves dampen out too fast. Instead, acoustic waves 
are being used for underwater sensing. Underwater propagation of acoustic waves is far from trivial due to 
reflections off the bottom or surface and variable sound speed [2]. The exact propagation depends on many 
parameters such as depth, temperature, pressure and salinity of the underwater environment [3]. 
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Model based acoustic localisation (MBAL) is the technique of localising an object in underwater 
environments by comparing acoustic sensor measurements to model output predictions of different candidate 
locations. Measurement errors, as well as uncertainties and variability in environmental parameters, for 
example the sound speed profile, can result in uncertain or biased locations [5]. To quantify these 
uncertainties one would like to run these acoustic propagation models a large number of times for a large set 
of different environmental parameters to then get an indication of the likelihood of different possible 
locations. Ideally, these calculations, including sampling from different optimal environmental parameters, 
should be performed on real-time data onboard of an underwater receiver.  

Various approaches have been developed to efficiently solve the model-based localisation problem with 
recent approaches investigating machine learning techniques such as convolutional neural networks [6] and 
Boltzmann machines [7]. A review on machine learning approaches applied to the domain of underwater 
acoustics, including acoustic localisation, is given by Bianco et al. [2]. 

At present, quantum computing, is still in its early stage of development and has not yet attained the size and 
quality necessary to address real-world problems of significant complexity. Nonetheless, it is anticipated that 
as quantum computers continue to mature, they will gain more traction and will be able to deliver benefits in 
various domains. In [8], an overview of quantum computing in the specific area of radar and sonar 
information processing is presented, including model based acoustic localisation as one of the most 
promising use cases. 

In this work a restricted Boltzmann machine (RBM) [9], a stochastic graphical network, is trained to predict 
the probability distribution of the candidate location of an underwater target. Advantage of this approach for 
acoustic localisation is that part of the computation can be moved to offline-training. Moreover, with an 
efficient sampling strategy, this potentially could enable real-time accurate target estimations being made 
onboard once the model is trained. 

One of the known disadvantages of RBMs is that evaluating their state, and hence training, is a time 
consuming task. Evaluating an RBM requires drawing samples from a Boltzmann distribution, typically 
done using Gibbs sampling which requires long equilibration time [9]. Adiabatic quantum computing (AQC) 
was proposed to be a more efficient way of sampling from Boltzmann distributions [10]. Numerous papers 
have since explored the possibility of using AQC for training RBMs with various applications. For a more 
comprehensive examination of other research conducted on quantum-RBM, we refer to Dixit et al. [11]. 

As a first step towards the quantum application of acoustic localisation, an RBM is applied to a simplified 
multi-sensor horizontal localisation problem, where we assume a constant sound speed profile resulting in 
straight paths. Simulated annealing performance is studied extensively as it offers a natural starting point to 
further pursue a quantum annealing RBM, for which preliminary results are shown.  

2.0  PROBLEM FORMULATION 

2.1 Assumptions 
The full MBAL problem, as described in the introduction, depends on a large number of environmental 
parameters and is therefore a far too complex problem as a starting point for this novel solution approach. 
Instead, we make the following two assumptions to simplify the problem. First. we assume that acoustic 
waves propagate in the (x,y)-plane. Hence ignoring reflections with surface and bottom. Next, we assume 
that acoustic waves propagate linearly with a constant velocity. 
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Given these assumptions, consider the following problem scenario. We look at a submarine that is located at 
the origin (x, y) = (0, 0). A target, that emits acoustic waves in the direction of the submarine, is located at 
(xsource, ysource). The submarine has 3 sensors in a line formation, each located at a distance 45m apart from its 
neighbour(s), at the locations (0, 45), (0, 0) and (0, -45). Sensors measure bearing angle and time of arrival of 
incoming acoustic waves. For each pair of sensors we can compute the time difference of arrival (TDOA). 

The localisation problem consists of locating the target based on the sensor measurements: three bearing 
angles, and two independent TDOA values. At this stage we assume perfect measurements. 

The values that can be represented on a quantum computer are limited by the available quantum resources 
(number of qubits). Hence the input and output parameter ranges need to be discretised into bins. When the 
available quantum resources increase over the course of time, more and finer bins can be used, leading to 
higher resolution predictions. The range for the angular coordinate θ is divided in equidistant sized bins. The 
radial coordinate is divided into exponential increasing bins, to obtain a higher resolution for sources that are 
nearby compared to sources that are still far away. If only candidate locations within a certain search region 
are considered it is possible to obtain a higher resolution, i.e., a larger number of grid points per area.  

 

Figure 1: The (bearing, range)-grid and its mapping to the (x,y)-plane. The three sensors on the 
submarine are shown with red dots and a target at (x,y)=(800m, 800m) is indicated with a red 
cross. Colours in the left figure indicate the probability that an output bin corresponds to the 
given input shown on the right. 

Our aim is to train a model, that is able to predict the output bin containing the target given the measured 
bearing and TDOA bin values. This is however not a straightforward one-to-one mapping. As can be seen 
from Figure 1, the overlap of the five input bins spans multiple output bins. So instead of predicting a single 
output bin, the model is trained to predict a probability distribution over multiple output bins. 

2.2 Restricted Boltzmann Machine 
An RBM is a graphical model consisting of two types of units: visible and hidden. The visible units represent 
the information from the environment, the hidden units are features that are to be estimated. All nodes of 
Boltzmann machine are binary valued and stochastic. Undirected edges exist between visible and hidden 
units and have trainable weights.  
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To solve the localisation problem a supervised RBM is trained to learn the probability distributions for 
different target locations. The model is trained and sampled using two different methods: (1) simulated 
annealing; or (2) quantum annealing, similar to Neumann et al.[12]. 

3.0  RESULTS 

In Figure 2, the probability distribution, as predicted by the RBM is shown, and compared with the true 
probability distribution for a given target. The model predicts the angular distribution particularly well. The 
accuracy in the radial direction could be improved, which is a common challenge for acoustic localisation 
methods.  

 

Figure 2: The found probability distribution by the model (left) compared to the true probability 
distribution (right). The model has 75 hidden units and is trained for 5000 epochs using 
simulated annealing. Bins that have nonzero probability are indicated with red. 

As a measure of quality for the RBM, three metrics are defined. (1) Distribution distance: The squared 
difference between the model probability distribution and the true probability. (2) Valid output: The 
percentage of output samples that can be used for localisation. (3) Wasserstein distance: The amount of 
work that is required to transform the model probability distribution into the true probability distribution. 

Each metric is computed as an average over 1000 different target locations as shown in Figure 3. The 
quantum model is only trained for 700 epochs due to limited available resources. The size of the considered 
model was chosen to be close to the maximum embeddable size on current D-Wave hardware. All three 
metrics, for both training methods, show that that the model is learning in the direction of the desired 
probability distribution. It can be shown that the error that remains is almost purely in the radial direction.  
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4.0  CONCLUSIONS 

Our study explores how quantum algorithms can be applied for more efficient information processing for 
acoustic underwater localisation. Our results demonstrates some success in training an RBM model for a 
simplified localisation problem. The main benefit of using an RBM for acoustic localisation is that the 
training of the model can be done offline and only the sampling has to be done onboard. Quantum annealing 
is proposed to enable more efficient training, but also able to improve during the sampling stage. 

Using simulated annealing we show that the RBM is able to learn the angular dependence of the probability 
distribution particularly well. Challenges remain in the radial dependence, which is a known and common 
issue within the field of acoustic localisation, and is driven by the limited resolution imposed by the available 
quantum resources. As quantum hardware size continues to advance, output resolution can be improved by 
increasing the number of TDOA bins or by incorporating additional hidden layers into the RBM. 

 

Figure 3: Performance metrics for quantum- and simulated annealing trained RBM. 

The total number of training steps that were performed using quantum annealing is not sufficient to draw 
definitive conclusions regarding possible quantum improvements during training or sampling stage. More 
extensive research is needed to demonstrate the potential benefits of using quantum annealing for training 
and sampling an RBM. Missing in this study is a comparison with an RBM that is trained with conventional 
techniques. Adding such comparison will be particularly interesting when more quantum annealing training 
steps are performed.  
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